易卖工控网11月4日讯,所谓“
智能制造”,就是将智能技术与传统制造业相融合所产生的新型业务模式。通过将物联网、通信技术、大数据等基础软硬件和数据支持,以及生物识别、机器学习、AR/VR等算法和解决方案贯穿于研发设计、原料采购、生产制造、物流运输、市场营销、销售、售后服务等制造企业价值链各环节并与其深度融合,从而具备信息深度自感知、智慧优化、自决策、精准控制自执行等功能。
1.人力劳动力的替代
《劳动力管理调研报告》预计,虽然到2025年中国制造业所需就业岗位将达到约1.5亿个,较2019年增长约23%;但是,这其中35%的就业岗位将由机器完成,人力劳动力较2019年反而减少了20%。
2.劳动力结构的巨大变化
如果以2019年的劳动力人口作为100的话,到2025年确实首先会减少31,但是同时也会增加11,这是因为虽然劳动密集型、智能分析性的劳动力会大幅度减少,但是技术密集型劳动力则会大幅度增加,沟通管理型劳动力也会小幅增加,从而使得劳动力结构发生根本性的改变。
《劳动力管理调研报告》列举了访谈的一家全球领先的电梯制造商的例子。这家企业的自动化程度较高,处处可见机械臂和自动化产线,一线员工数量的减幅较大,以前车间员工与办公室员工的数量比是6:4,现在则变成了4:6。未来,这家企业计划用机器和
人工智能来替代所有基础性的工作,将缩减的岗位包括维保员工、工厂图纸设计岗位、专职报表业务人员、合同评审团队,地方HR。这家企业也需要新增不少数字化和新技术相关的岗位。根据这家企业CHRO的预计,企业岗位未来5年的增减比例约为1:5。长远来看,新增的岗位较少,企业劳动力总体量还是呈下降趋势。
劳动力管理的三大挑战和对策
《劳动力管理调研报告》总结:制造企业在“U时代”的劳动力管理面临着三个重大挑战,分别是:
挑战一:新人才招聘
新人才招聘面临的挑战主要在两个方面:如何准确定义智能技术下工作岗位所需的能力素质;如何准确匹配最佳的受聘人群,尤其是跨行业人才招聘。
企业向着智能自动化迈进,人才标准的重新定义也需要相应地符合企业发展方面的要求,而目前传统的人力资源管理对于智能技术驱动下的业务需求存在信息收集和理解不足的问题,因此难以准确描绘新业务背景下所需人才画像,从而导致人岗匹配困难,尤其缺乏拥有综合能力的复合型人才。
技术的快速变革带来了灵活用工,劳动力的高流动性使得招聘日益频繁,难以捕捉高效招聘渠道和重塑招聘流程,从而给招聘效率的提升带来挑战。而且,传统的薪酬体系未能与市场接轨,准确的人岗匹配将变得更加困难。
挑战二:劳动力再培训
劳动力再培训的难点在于如何开发智能技术所需的培训和考核内容,以及为员工匹配个性化的课程与发展路径。
智能技术正在快速迭代,技能需求不断升级,现有员工需要接受有效的培训、持续且有针对性的学习,才能满足“U时代”对劳动力的能力需求。而且由于员工的水平参差不齐,如何识别新技能缺口并设计个性化的培训将变得至关重要。
《劳动力管理调研报告》显示,65%的受访企业高管表示,在过去3年中,需要内部再培训的员工比例低于40%;但未来3年,随着智能技术的加速渗透,近40%受访者认为人员再培训比例将超过60%。
挑战三:劳动力绩效管理
当前对员工的绩效评估仍以主观为主,缺少客观数据评估支持的局面。未来衡量员工绩效的工具和标准都需要更新。同时,智能技术的发展对人机协作、信息共享、决策能力等非标准化能力带来更多需求,因此智能技术所需精英人才需采用新的绩效体系进行激励,以个性化的评估反馈来指导未来工作,提高人岗匹配程度。这也是“U时代”劳动力绩效管理的真正难点。
标准化的工作已经由机器替代,非标准化的工作如何考核、考核什么内容、怎样保证考核的公平公正都是挑战。HR需要在深入了解业务、技术和员工的基础上,给予不同岗位所适配的不同评估,这里面需要更新的不仅仅包括评价体系及要素、衡量工具、晋升标准等,对人才梯队的选拔也需结合智能知识和技能体系所带来的新变化。
HR作为劳动力管理核心且唯一的部门,随着人机新生态发展的深入,需要更加理解业务、人与技术。在智能技术的影响下,人力资源管理的工作内容与角色定位将发生变化,战略性与创造性的工作大幅增加,带来HR在企业内部定位的进一步提升。HR需要基于对业务流程、技术应用、行业竞争的深入理解,开展劳动力规划、人才招聘等工作。由于劳动力结构的转变,技术密集与沟通管理型精英人才占比提升,人才的激励、发展和企业文化建设将成为HR工作的重中之重。以上就是关于2025年中国制造业所需的1.5亿就业岗位中有35%将由机器完成的相关内容介绍,更多工业品最新资讯请访问:
工控网(https://www.ymgk.com)
文章图片来源于网络